Анализ механизмов эволюционных изменений динамических структур галактик

А. А. Крушев, Дм. А. Крушев, Д. А. Крушев, Н.И. Славщик, П. А. Крушев

Все авторы имеют равное участие в данной статье

В статье определено, что динамические структуры галактик представляют единые эволюционные комплексы из обычного вещества и темной материи, образующих самостоятельные диски, расположенные перпендикулярно друг к другу и вращающиеся вокруг единого центра. Обычное вещество и темная материя являются двумя стабильными, взаимно переходящими фазовыми состояниями единой материи, имеющими свойства взаимного отталкивания и в процессе эволюции галактик переходящими из одного фазового состояния в другое, по очереди являющимися друг для друга материнским и дочерним веществом.

Ключевые слова: динамическая структура галактик.

1. Введение

Большое разнообразие форм галактик затрудняет объяснение общей природы формирования динамических структур галактик. Для упрощения вычислений применяют разбивки общих галактических дисков на отдельные участки орбит баров и спиралей, например [1], [2]. Это значительно упрощает расчеты динамических моделей галактик, но не объясняет: механизмов динамического формирования рукавов и дисков галактик; динамической стабилизации дисков; галактик с обратными ветвями спиралей; галактик с отверстиями в центре дисков [3]; галактик типа boxy и т. д.

Поэтому исследования механизмов формирования динамических структур галактик и механизмов динамической стабилизации рукавов и дисков галактик являются актуальными.

Целью статьи является анализ механизмов формирования галактик типа boxy.

2. Наблюдения и анализ

В работах: [4]–[6] проводятся исследования галактик типа boxy NGC 4650A; UGC 5119; UGC 5600; NGC 7468; NGC 4548. Делаются выводы о наличии в их структурах двух дисков, вставленных один в другой под большим углом. Анализ работ [7]–[10] показывает, что в совершенно разных типах галактик наблюдаются движения звезд и газов под большими углами наклона к основному диску галактик, движения газов и звезд под большими углами к плоскости основного диска являются стабильными, носят систематический характер и наблюдаются на всех стадиях развития галактик.

При анализе скоростей вращения дисков галактик определено, что возмущения дисков ранних и поздних галактик носят прямо противоположный характер. В работе [11] делается вывод, что диски галактик ранних типов динамически перегреты. В работах [12], [13], [14], [15] делается вывод, что диски галактик поздних типов имеют обратное возмущение, и ожидаемого кеплеровского спада скоростей на больших радиусах не происходит.

На основании анализа динамических возмущений скоростей вращения дисков галактик нами сделано предположение, что динамические возмущения дисков как ранних, так и поздних галактик являются эволюционными.

В статье [16] делается вывод, что в ранних галактиках часто наблюдаются полярные кольца. В статье [17] делается вывод: полярный ветер и полярные кольца химически выделены к основному диску галактик. На основании этих наблюдений, мы делаем вывод, что ранние галактики в конце своей эволюции переходят в галактики с активными ядрами, выбрасывающие полярный ветер и, что именно из полярного ветра активных галактик формируются полярные диски, располагающиеся выше диска материнской галактики, перпендикулярно к материнскому диску галактики.

По форме выбросов полярного ветра перпендикулярно плоскости основного диска материнской галактики, его сжатию в узкий поток можно сделать вывод, что полярный ветер и диск материнской галактики имеют свойство взаимного отталкивания. Следовательно, образующийся дочерний полярный диск тоже должен отталкиваться от диска материнской галактики и находится в подвешенном состоянии. Диск материнской галактики, наоборот, отталкиваясь от дочернего полярного диска, должен испытывать внешнее давление, что должно приводить к его разогреву.

Анализ скоростей дисков ранних галактик свидетельствует, что возмущения дисков ранних галактик и их динамический нагрев

соответствуют возмущениям отталкивания от верхнего, дочернего, полярного диска.

Анализ скоростей рукавов галактик поздних типов свидетельствует, что они соответствуют динамическим характеристикам движения от материнского центра галактик.

Анализируя галактики с активными ядрами, мы пришли к выводу, что их можно разделить на две основные группы. В первой группе в видимых частотах спектров хорошо наблюдаются аккреционные диски, а потоки звездного ветра прозрачны, но наблюдаются в радиочастотах, как газовые туманности. К первой группе относятся ранние галактики. Во второй группе, наоборот, в видимых частотах хорошо наблюдаются полярные выбросы, а аккреционные диски прозрачны, но наблюдаются в радиочастотах, как газовые туманности. Ко второй группе относятся галактики типов квазаров и пульсаров.

Сравнивая формы джетов квазаров и пульсаров с формами полярного ветра ранних галактик, мы пришли к выводу, что они аналогичны. Нами было сделано предположение, что ранние галактики и пульсары с квазарами представляют два одинаковых процесса, но противоположных по изменениям фазового состояния вещества. В ранних галактиках происходит переход обычного вещества в темную материю, выбрасываемую полярным ветром, а в квазарах и пульсарах происходит переход темной материи в обычное вещество, выбрасываемое джетами.

Сравнивая формы джетов квазаров и пульсаров с формами перемычек в ядрах и рукавами поздних галактик, мы пришли к выводу, что они аналогичны.

Из комплексного анализа можно сделать вывод: во всех галактиках существует два фазовых состояния вещества – обычное вещество и темная материя, имеющие свойства взаимного отталкивания и последовательно переходящие в АЯГ из одного фазового состояния в другое с образованием самостоятельных дисков расположенных перпендикулярно друг к другу и вращающихся вокруг единого центра. Это объясняет механизмы возмущений динамики дисков от темной материи и темной энергии и несоответствие скоростей законам Кеплера. Взаимное рукавов поздних галактик отталкивание обычного вещества и темной материи друг от друга объясняет возмущения дисков ранних И поздних галактик, стабилизацию дисков галактик в одной плоскости. Динамически такая система очень устойчива.

Стабилизацию дисков в планетных и спутниковых системах, вероятно, можно тоже объяснить силами отталкивания от полярного ветра.

Эволюционная последовательность образования галактических дисков из обычного вещества и темной материи свидетельствует, что галактические диски из темной материи повторяют полный цикл эволюции галактических дисков из обычного вещества. Это говорит о том, что стабильность состояния темной материи полностью соответствует стабильности обычного вещества.

3. Выводы

На основании анализа эволюционных изменений динамики галактических дисков сделан вывод, что структура галактик представляет сложный, единый эволюционный комплекс из обычного вещества и темной материи, образующих самостоятельные галактические диски, расположенные перпендикулярно друг к другу и вращающиеся вокруг единого центра. Обычное вещество и темная материя являются двумя стабильными, взаимно переходящими фазовыми состояниями единой материи, имеющими свойства взаимного отталкивания и в процессе эволюции по очереди являющимися друг для друга материнским и дочерним веществом. Эволюция вещества в Метагалактике является замкнутой.

Рукава поздних галактик образуются в результате полярных выбросов квазаров и пульсаров, имеющих аккреционные диски из темного вещества. Скорости спиралей поздних галактик соответствуют законам магнитного отталкивания, расширения. По мере аккреции материнского диска дочерний диск снижается и превращается в материнский диск для нового дочернего диска. При образовании дочернего диска наблюдается разрыв и «отрыв» хвостов рукавов материнского диска. В результате отрыва хвостов рукавов происходит ограничение максимальной массы галактик.

Формирование динамических структур галактик из отдельных дисков обычного вещества и темной материи объясняют природу образования всех типов галактик и наблюдаемых явлений: линейных скоростей дисков ранних и поздних галактик; плоскостей вращения звезд и газов под большими углами к основным дискам галактик; формы неправильных галактик; наблюдаемых «отверстий» в центрах дисков галактик. При наблюдении под определенными углами галактик boxy объясняются наблюдаемые противоположно направленные спирали.

Сделано предположение, что стабилизация дисков в планетных и спутниковых системах объясняется силами отталкивания от полярного ветра звезд и планет.

Литература

- 1. Polyachenko, E. V. Outline of the unified theory of spiral and bar-like structures in galaxies / E. V. Polyachenko // 2004MNRAS.348..345P
- 2. Polyachenko, V. L. A Unified Theory for the Formation of Galactic Structures / V. L Polyachenko, E. V. Polyachenko // 2004ARep...48..877P
- 3. Einasto, J. Central holes in disks of spiral galaxies / J. Einasto [et al.] // 1980Ap&SS..67...31E
- 4. Karataeva, G. M. A Photometric Study of the Polar Ring Galaxy UGC 5600 / G. M. Karataeva [et al.] // 2001AstL...27...74K
- 5. Shalyapina, L. V., NGC 7468: A Galaxy with an Inner Polar Disk / L. V. Shalyapina [et al.] // 2004AstL...30..583S
- 6. Merkulova, O. A. Spectroscopic study of the peculiar galaxy UGC 5119 / O. A. Merkulova [et al.] // 2008AstL...34..542M
- 7. Oopt, J. H. Bull. Astron. Inst. Netherl. 6, 249 (1932).
- 8. Alcock, C. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations/C. Alcock [et al.] // 2000ApJ...542..281A
- 9. Afonso, C. Limits on Galactic dark matter with 5 years of EROS SMC data. / C. Afonso [et al.] // 2003A&A...400..951A
- 10. Emsellem, E. The SAURON project—III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies / E. Emsellem [et al.] //2004MNRAS.352..721E
- 11. Zasov, A. V. Early-type disk galaxies: Structure and kinematics / A. V. Zasov [et al.] // 2008ARep...52...79Z
- 12. Bottema, R. The Stellar Kinematics of Galactic Disks. / R. Bottema // 1993A&A...275...16B
- 13. Sofue, Y. Rotation Curves of Spiral Galaxies / Y. Sofue, V. Rubin // 2001ARA&A..39..137S
- 14. Khoperskov, A. V. The Halo-to-Disk Mass Ratio in Late-Type Galaxies / A. V. Khoperskov // 2002AstL...28..651K
- 15. Noordermeer, E. The mass distribution in early-type disc galaxies: declining rotation curves and correlations with optical properties / E. Noordermeer [et al.] // 2007MNRAS.376.1513N
- 16. Whitmore, B.C. New observations and a photographic atlas of polar-ring galaxies / B. C. Whitmore [et al.] // 1990AJ....100.1489W
- 17. Cox, A. L. Radio Continuum Emission in Polar Ring Galaxies. / A. L. Cox,
- L. S. Sparke // 2004AJ....128.2013C